
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  20 ( 1 9 8 5 )  2 3 7 7 - 2 3 8 7  
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The layer removal analysis of residual stress distribution is examined for mouldings which 
contain depth-varying Young's modulus. The approach is to compute the stress distribution 
which would be derived from the layer removal procedure if the assumption is made that 
the Young's modulus is uniform, and to compare it with the actual stress distribution. 
For this analysis a parabolic stress distribution is assumed to be present, and computed 
distributions are obtained for two cases, (i) in which the modulus varies linearly from the 
surface to the centre of the moulding and (ii) in which the modulus has a constant value 
near to the surface ("skin") then changes suddenly to another constant value in the interior 
("core"). The general features of the computed profiles are compared with experimental 
layer removal analyses conducted on injection-mou Ided specimens and the extent to which 
non-uniform modulus influences the results of such studies is discussed. 

1. Introduction 
Articles fabricated under non-equilibrium con- 
ditions frequently contain residual stresses which 
may have an important influence over mechanical 
and failure properties. Consequently methods have 
been developed for measuring residual stress dis- 
tributions. In one class of techniques parts of the 
article are machined away causing a change in the 
equilibrium stress distribution in the part which 
remains when fieed from external tractions. 
Measurement of the change in dimensions which 
results enables an assessment to be made of the 
level of stress in the portion removed. Planar or 
cylindrical geometries present the easiest cases for 
analysis and many examples can be found in the 
literature in which thin uniform layers are removed 
from bars, sheet or pipe of uniform wall thickness. 

Studies of this kind are important in thermo- 
plastics mouldings because the poor thermal con- 
ductivity of these materials causes large tempera- 
ture gradients to develop during moulding oper- 
ations and this in turn leads to the formation of 
large residual stresses which can influence the sub- 

sequent distortion and/or fracture behaviour. 
Examples of articles in which residual stress levels 
have been investigated are extruded pipe and 
injection-moulded bars and plaques. Many studies 
have been published of the measurement of residual 
stresses in thermoplastics in the form of bars, 
plaques or sheets [ 1 - I 1 ]  using an analysis 
described by Treuting and Read [12]. In the 
Treuting and Read analysis stresses are assumed to 
be uniform at a particular depth within the mould- 
ing, but biaxial stresses are allowed for. The analysis 
is based on linear elasticity theory and assumes 
that the Young's modulus and Poisson's ratio are 
constant throughout. 

Injection mouldings produced from semi- 
crystalline polymers display great differences 
in morphology at different depths [13-21], 
and it is to be expected that the stiffness (and 
possibly Poisson's ratio) will vary according to 
position. There is experimental evidence for 
this and for other depth-dependent variations 
in property in semi-crystalline polymers [21-27].  
Depth-dependent variations in modulus are also 
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anticipated in moulding produced from non- 
crystallizing polymers for bi-refringence measure- 
ments indicate strong depth-dependent changes in 
molecular orientation [10, 28-36].  Finally, 
injection mouldings made from short glass fibre- 
filled polymers are found to contain significant 
variations in fibre orientation and fibre concen- 
tration [37-40] and this will lead to variations 
in modulus. It has been pointed out by the present 
author and by others [11, 41] that variations in 
modulus introduces errors into the unmodified 
form of the Treuting and Read analysis, and the 
purpose of this paper is to examine the effect of 
having a depth-dependent modulus. 

2. Method 
In the layer removal procedure described by 
Treuting and Read [12] a uniform layer is 
machined away from the surface of the moulding 
[42] and the resulting curvatures parallel to the two 
principal axes in the plane of the mouldings are 
measured. This procedure is repeated several times, 
at least until half of the wall thickness has been 
removed, and a plot of curvature against depth of 
material removed is generated. If the modulus is 
uniform throughout the moulding this plot may 
be used to obtain data for direct insertion into a 
formula derived by Treuting and Read to give the 
residual stress profile. If the modulus varies with 
depth either the experimental procedure must be 
changed (for example by choosing to measure the 
bending moment required to straighten a bar-shaped 
moulding rather than measuring the equilibrium 
curvature when there are no external forces) or the 
analysis must be modified. The measurement of 
curvature is generally found to be much more con- 
venient than the measurement of bending moment, 
and reproducibility is superior [42]. In either case 
it is required to know the depth-dependence of 
modulus. 

Thus it is desired to explore the influence of a 
variation in modulus on the curvature obtained in 
a layer removal experiment. Ideally, the Treuting 
and Read analysis should be modified to permit 
direct computation of the residual stress a(Zl) at a 
position zl from the bar centre using plots of cur- 
vature, p, against depth of material removed as in 
the unmodified version. Unfortunately the trans- 
formation of the integral equation described in the 
Appendix of the paper by Treuting and Read [12] 
that enables a(zl) to be expressed explicity cannot 
be performed conveniently when the modulus, E, 

is a function of zl. Therefore, the approach used 
here is to select various combinations of stress dis- 
tribution, or(z1), and modulus variations, E ( z l )  , 

and to compute the plots of curvature, p, against 
depth of material removed. These are then com- 
pared with experimental curvature profiles. Further 
indication of the magnitude of the error introduced 
when the assumption is made that the modulus is 
uniform is obtained by performing an unmodified 
Treuting and Read analysis on the computed p(zl) 
curve obtained for a sample with depth-varying 
modulus. The Treuting and Read analysis gives an 
erroneous ai(zl) distribution which is then com- 
pared with the original stress distribution assumed 
to be present. 

2.1. Choice of stress distribution 
The distribution of stress in quenched flat plates 
has been examined theoretically by many authors 
[5, 6, 43-51 and references there in]. The simplest 
theories predict a parabolic distribution of residual 
stress, although special consideration of the con- 
ditions prevailing during the injection moulding 
of a thermoplastic and of the viscoelastic properties 
of the material have led to modified forms. As a 
first step a parabolic stress distribution has been 
selected for the computation presented here. This 
has a fairly slowly varing tensile component in the 
interior, rising to maximum at the bar centre, 
and rapidly changing compressive stresses, rising 
steeply in magnitude near the surfaces. 

2.2. Choice o f  Young 's  modu lus  
dis t r ibut ions  

Although experimental evidence clearly indicates 
that significant variation in modulus can occur at 
different depths in injection mouldings, an exact 
modulus against depth profile has never been 
reported. Two cases have been examined here. 

2.2. 1. Case 1 
The modulus is assumed to change linearly from 
the centre of the bar (at which it is given the value 
Ee) to the surface (at which it is given the value Es). 
Es can be larger or smaller than Ec, and the differ- 
ence (E s -- Ee) can be varied to examine a range of 
departures from the uniform modulus case. The 
modulus variation is shown in Fig. 1, and can be 
described as follows: 

E(z) = Ee +(Es--Ec)z/t 0 < z < t  (la) 

E(z) = Ee--(Es--Ee)z/t - - t < z < 0  (lb)  
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Figure 1 Linear variation in modulus through the thick- 
ness of the bar (a) E e > Es, where E e is the value at the 
centre of the bar (z = 0) and E s is the value at the surface 
(z = • t). (b) E s > E e (Case I). 

0 < z < t  

( lc)  

- - t < z < O  

( ld )  

where E e and E s are the values of the Young's 
modulus at the centre of the plate and at the sur- 
face, respectively. The plate thickness is 2t, and 

z = 0 a t the central plane. If the plate is anisotropic, 
with orientation-dependent modulus then Equa- 

tions la and b would have to be replaced by 

G(z)  = G,x  + ( G , x -  

and 

Ex(z)  = E~,~-- (E,, x - . E ~ , x ) z / t  

where the subscript x denotes the direction of 
measurement, and a similar pair of expressions 

describe Ey(z).  In the current paper it will be 
assumed that the plate is isotropic in t h e x - y  plane, 

and the form given in Equations la and b will be 

used. 

2.2.2. Case II 
The modulus is considered to take a constant value 

(Es) in the skin (near to the surface), then to 
change discontinuously to another value (E~) which 

q q 

q q er 

tZ  ) z  
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Figure 2 Depth variation in modulus in which the skin has 
a constant modulus E s and the care a constant modulus 
E c and there is a discontinuous change at z = +-a (see 
text) .  (a) E e > Es; (b) E s > E e (Case I I ) .  

V U 

Figure 3 Cross-section of a bar or plaque, which originally 
had planar surfaces at z = • t from the central plane 
(z = 0), after machining away a depth u from the top sur- 
face. The central plane is now located at a position z = -u/2, 
and the moulding curves. In the text the radius of curva- 
ture is R for the sense of bending shown in this figure. If 
the stress at the surface is compressive, as is most fre- 
quently the case, the sense of bending will be opposite to 
that shown here. It is for this reason that the values of 
p (= 1/R) calculated in this paper are negative for the 
computations made for a stress distribution which is 
compressive near the surface. 

is maintained throughout the core (Fig. 2). In this 

case in addition to the parameters E s and E e which 

can be adjusted to match the characteristics of a 
given bar another parameter representing the pos- 

ition of the discontinuity in modulus (the s k i n -  

core boundary) must be chosen. If this boundary 
is located a distance a from the centre of the plate 

then the modulus can be described as 

E(z)  = Ec - - a < z <  a (2a) 

E(z )  = E s - - t < z < - - a ,  a < z < t  (2b) 

where once again it is assumed that the plate is iso- 
tropic in the x - y  plane. 

3. T h e  analysis 
3.1. General formulation 
Consider the effect of machining away a depth u 

of material from the top surface of the plate. The 
plate will change in dimensions in both the x and y 

directions and will curve in both the x a n d y  direc- 

tions in response to the unbalanced forces (Fig. 3). 

Let the overall change in length of the plate in the 
x direction be described by a strain 3%; this is the 
strain which would be observed if the plate were 
prevented from bending by applying bending 

moments to oppose the internal bending moments 
which appear as a consequence of the removal of 
material. The corresponding strain in they direction 

is l 'y. Suppose that on removing all external trac- 
tions the plate curvature in the x direction has 
radius R x and in the y direction has radius R y. 

Thus the strain in the x direction at position z is 

ex(Z) : 3% + (z + u/2)/R x (3a) 

Similarly in the y direction the strain will be 

ey(z)  = 7y + (z + u / 2 ) / R , .  (3b) 
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If  the residual stresses prior to layer removal are 
given by at, ~(z) and oi, y(z) in t hex  a m y  direc- 
tions respectively, then after removal of  a layer of  
thickness u from the top surface the stress becomes 

o'i, x(z) = E,(z) [Tx + (z + u/2) /R, l / (1  - ~'x,u,,) 

+ o~,.(z) + v~.Ex(z) 

x ['ly + (z + u/2)/Ry]/(1 -- v~yVyx) (4a) 

and 

a~, y(z) = Ey(z) [Ty + (z + u/Z)/Rs]/(1 - - , , yvyx)  

+ Oi,y(Z) + uxyEy(z) 

x [Tx + (z + u/2)/Rx]/(1 -- VxyVsx) (4b) 

where the Poisson ratio Uxy is defined such that 
when a uniaxial stress in the x direction produces a 
strain ex in this direction the strain in the y direc- 
tion is -- pxyex, and a similar meaning attaches to 

P y  x "  

The purpose of  this paper is to demonstrate the 
influence of  depth-dependent modulus values on 
residual stress measurements. The general formu- 
lation shown in Equations 4a and b takes into 
account anisotropy in the elastic properties 
(Ex 4: Ey and/or Uxy v~ Uyx) and residual stresses. 
If  the general formulation is pursued the algebra 
becomes unwieldy and to isolate the effect of  depth 
dependent modulus variation the following simpli- 
fications will now be introduced: 

E,dz) = E , ( z )  = E(z) (5a) 

Vxy = Usx = v (5b) 

o~,~(z) = < , ~ ( z )  = o~(z) (Sc)  

Equation 5c represents equibiaxial stresses. Such 

a distribution would be expected in a compression- 
moulded plaque and may sometimes be approxi- 
mated in an injection-moulded article which cools 
slowly enough for orientation effects to become 
relaxed. When Conditions 5a to 5c are fulfilled it 
will also be true that 

7 x = T y  

and 

(5d) 

R x = Ry (5e) 

a'~..(z) = ol., ,(~) = ~;(~) ( s f )  

Hence Equations 4a and b reduce to 

6r'i(z ) : E(z) [~-I- (z -[-11/2)/R1 (1 + v)l(1 - v  ~) 

+ o~(z) (6)  

Now from the requirements of  internal equilibrium 
the following conditions must be obeyed: 

j-,;u, 
(a) Force equilibrium: a i(z) dz = 0 (7) 

, : t -u 
(b) Internalbendingmoment:  J~-t a'i(z)z dz = 0 

(8) 

The procedure now is to substitute for a'i(z ) from 
Equation 6 into Equations 7 and 8 then solve for 
R(u) using E(z) for Case 1 (Equations la and b) or 
Case II (Equations 2a and b). In the derivations 
presented below a parabolic representation of initial 
residual stress distribution has been used 
(Section 2.1): 

ai(z)  = % ( 1  - 3z~/t ~) (9)  

where ao is the stress at the centre of the plate 
(Fig. 4). 
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Figure 4 Curvature plotted as a function 
of distance removed, u, for Case I using 
(i) E s=2GNm -z, E e = l G N m  -2 
( - - - - - )  and (ii) E s = I G N m  -2, Ee= 
2 GN m- ~ ( . . . . . .  --). Curvature values 
are negative as a consequence of the sign 
convention used and the sense of the 
stress distribution. The plot which would 
be obtained for a plate with the same 
stress distribution if it possessed a uni- 
form Young's modulus E = 1.5 GNm -~ 
is shown as a solid line. 



3.2.  D e r i v a t i o n  o f  c u r v a t u r e  f o r  Case I 
From Equation 7 we obtain 

< -  Eo)z/,][7 + (z + u/2)/R] 

I ~ + oe(1 -- 3z2/t2)} dz + {[Ec+ ( e , - e 0 z / t l  
- t  

x Iv + (z + u / 2 ) / R ] / ( 1  - ~) 

+ %(1 -- 3z2/t2)}dz = 0 (10) 

This is valid for removals as far as z = 0, that is for 
0 ~< u ~< t. On evaluating the integrals and putting 
u/t = a it is found that 

[E~7(2 --c0 + (E~--Ee) 7(1 - - a  + a2/2) -- (Es2- E~) 

x (a -- a2 + a3/6)t/2R]/(1 -- u) 

+ o e ( 2 a  - -  3o~ 2 q- (x 3 )  = 0 (1 1) 

From Equation 8 is obtained: 

.Ito-U {[Ec+ (Es--Ee)z/t] 

x [vz + ( ?  + u z l 2 ) / R l  t(1 - v) 

+ o~(1 -- 3z2/t2)z}dz 

+f_~ [ G - ( G - G ) z / t ]  

x [Tz + (z 2 + uz/2)/R]/(1 -- v) 

+ oe(1 - -3z2/ t2)z}dz = 0 (12) 

which is again valid in the range 0 <~ u % t. 
This reduces to 

[G7(~ ~ - 2~)/z + G(2/3 - ~ + c ~ / 2 -  ~3/12)t/R 

+ ( E s _ E r  ~ + ~2 _ a3/3) + (Es--E~) 

x ( 1 / 2 - - a  + c~ 2 - a 3 / 2  + a4112)tlR]/(1-- v) 

+ o c ( 2 a - -  4o~ 2 + 30~ 3 - -  3a4/4) = 0 (13) 

Equations 1 1 and 13 can be used to eliminate Y, 
leaving an expression for R. The solution in terms 
of the curvature p ( =  1/R) is 

l {p 'r - -p~r , '  1 (14) 
P = t ~ p q ' - - p q ]  

where the parameters have been grouped together 
for convenience of presentation and computat ion,  
andp ,  q, r, p ' ,  q', r '  are given below as: 

p = --Eta~2 -- (Es - -E~) (1  --  a + c~2)/3 

(14a) 

q = 

y 

p = 

t q = 

r ~ = 

Ee(4 - 4 a  + cr + (Es - -  Ee) 

X ( 4 a - - 4 a  2 + a3)/12 (14b) 

Oe(~ -- 3 a2/2 + 3a3/4)(1 -- v) (14c) 

E c + (E s - E e ) c d 2  (14d) 

( E s -  E e ) ( - - 4  + 4 a -  a2)/12 (14e) 

%(~ - ~ 2 ) ( 1  - v)  ( 1 4 0  

It is a straightforward task to check that this 
formulation is consistent with that of  Treuting 
and Read by setting E s = E e i n  Equations 14 
before substituting into Equation 13 and using the 
expression for p so obtained in the Treuting and 
Read formula for the distribution of stress in terms 
of p(z): 

- - E  
O ' i ( Z  1 ) - -  

6(1 - v )  

[ dP +4(t+zx)p--2f t ] - -  pdz (15) X ( t + Z l ) 2 d z  1 z, 

Equation 15 is the equibiaxial form [12, 42, 52] 
and zl is measured from the location of the 
central plane before layers are removed, i.e. 
Zl = t - -u .  The curvature, p, calculated by this 
method is plotted as a function of depth removed, 
u, in Fig. 4. In previous papers we have followed 
Treuting and Read in representing depth removed 
(u) as (Zo - - z l )  where in the nomenclature of the 
current paper z0 -= t. 

3.3. Apparent stress distribution (Case I) 
If  the curvature, p, given by Equations 14 is sub- 
stituted into Equation 15 and if it is assumed that 
E is a constant, then an apparent stress distribution 
if found. The significance of this distribution 
is that it corresponds to that which would be 
obtained by a straightforward experimental appli- 
cation of the Treuting and Read procedure to a 
plaque containing equibiaxial stresses (as described 
by Equation 9) but in which the modulus varied 
according to Equaitons 1 a and b so that an error is 
incurred by making the assumption that E in 
Equation 15 is a constant. The appropriate value 
to use for E is (Es + Ee)/2. By way of illustration 
this distribution has been evaluated for two 
examples, one in which E s = 2Ec and the other in 
which E e = 2 E  s.  In order to compare the results 
with experimental data obtained previously, much 
of which has been presented elsewhere [7, 11], t is 
chosen to be 1.5 mm (corresponding to bars or 
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Figure 5 Stress distributions computed 
from the curvature plots shown in Fig. 4, 
using (i) Es= 2GNm -2 , Ee= 1 GNm -2 
( - - - - - - )  and ( i i ) E s = l G N r n  -2, Ee=  
2GNm -2 ( . . . . .  ). The "assumed" 
parabolic distribution is shown as a solid 
line. 

plaques 3 mm thick, a common value for these 
studies) and oc is chosen to be 2 MNm -2, again 

with reference to experimental values. It is a simple 
task to present the same results in terms of  a and 
a e for a more general representation. The values 
chosen for Es and E c were (i) E s =  2 G N m  -2, 
E e = 1 GN m -2 and (ii) Es = 1 GN m -2 , E e = 
2 GN m -2 respectively, giving E = 1.5 GN m -2 
in both cases. Poisson's ratio was given the value 
v = 0.4. Both distributions, el, are shown in Fig. 4, 
and the parabolic ( " t rue")  form (Equation 9) is 
included for comparison. It is evident that  the 
magnitudes of  the residual stresses are over- 

estimated in the first example [(i): E s >  Ee] and 
underest imated in the second [(ii): E s <  Ee]. A 
feature of  note in example (i), (Es > Ee), is that 
the computed stress rises to a maximum not at the 
bar centre, but  at a location approximately 0.4 mm 
from the bar centre, and that a shallow minimum 
is displayed at the centre (Fig. 5). 
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3.4. Comparison of tensile and compressive 
stresses (Case I) 

The net stress over the cross-section of  a self- 
stressed component  must be zero so that the 
integral of the stress distribution should be zero. 
Hence the positive and negative areas in stress dis- 
tr ibutions like those presefited in Fig. 5 should be 
of  equal magnitude for each individual curve. 
Because of  the erroneous assumption made to gen- 
erate the curves for plaques in which Es :h E e these 
distributions may not  fulfil this condition. On 
comparing the tensile and compressive areas in 
Fig. 5 significant differences were found. For  the 

example in which the modulus of  the skin is greater 
than that in the core ( E s = 2 G N m - 2 ,  
E e = 1 G N m  -2) the ratio of  the tensile area to the 
compressive area is 1.29, whereas for the example 
in which the core is stiffer (Es = 1 G N m  -2, 
E e = 2 G N m  -2) the ratio is 0.77. 



T A B L E I Parameters in Equation 20 (Case II) 

Parameters Range 

u < t - - a  t - - a < u  < t  + a  

1 
f 
k' 

-- Esa(2 -- c0/2(1 -- u) 
(E c -- Es) 2/3 3/3(1 -- ~,) 
+ Es(2--a)3/12(1 -- u) 
%(2 --c0(4c~--6c~ 2 + 3c?)/4 
[(Ec-- Es)2/3 + Es(2 -- c0]/(1 -- ~') 
(E c --Es)~/3/(1 -- u) 

I' e c a ( 2 - - ~ ) ( 1  - - ~ )  

[(E e --Es)/3 + E s + Ee(1 -- col/(1 -- u) 
(E s -  Ee)[/32 -- ~/3 -- (1 -- a)12(1 -- u) 

OeC~(2 -- c0(l  -- cr 
Es(/3 = -- 1)/2(1 -- v) + Ee[(1 -- a) 2 -- ~2 ]/2(1 -- v) 
Es(--4133 + 3~/3 2 -- 3c~ + 4)/12(1 --v) 
+ Ee[4(1 -- cr 3 + 4/3 a + 3cr -- c0 = -- 3cr 2 ]/12(1 -- u) 
%c~(2 -- c0(1 -- 3at2 + 3 c~2/4) 

3.5. Derivation of curvature for Case II 
3. 5. 1. u < t - -  a (skh~) 

From Equa t ion  7 it is found that:  

- t ,a  {Es[3' + (z + u/2)/R]/(I - -  u) 

+ oc(1 - -  3z2/t2)}dz 

f;,, {G[3' + (z + u l 2 ) l R l l O -  + P) 

+ Oc(1 - 3z2tt2)}dz = 0 (16)  

Again using the subst i tu t ion u/t = a and intro- 

ducing also a/t = 18, this becomes  

Es [-- 23'18 + 7(2 - -  ~) - -  ~18tlR]/(1 - v) 

+ Ec(2  3'18 + 3"{JtlR)/(1 - v) + % ( 2  - ~) 

x (c~--c~ 2) = 0 (17)  

F r o m  Equa t ion  8 is obta ined  in the same interval 

(u < t - a):  

U- 
{Es [3'z + (z 2 + uz/2)/R]/(1 - v) 

+ %(1 - 3zZ/t2)}dz 

+j_. {EcDz + (z 2 + uz l2 ) /R] l (1  - v) 

+ oe(z-- 3z3/t2)}dz = 0 (18) 

This reduces to 

Es [-- 2183 t/BR -- 3'a(2 - -  a)/2 + (2 - -  a) 

x ( 4 - -  4c~ + ~2)t/12R]/(1 - -  u) + Ee2183 t/3R (1 - -  v) 

+ 0 e ( 2 - - ~ ) ( c ~ - - 3 c ~ 2 / 2  + 3a3/4)  = 0. (19)  

Equa t ions  17 and 19 can be used to el iminate 3', 

leaving an expression for R.  The solut ion in terms 

of  curvature P ( =  1/R) is 

J,'-s',l 
P = t \ ] 'k  --~]s (20) 

where ], k, l,/% k ' ,  l ' ,  are def ined in Table I. 

3.5 .2 .  t - -  a < u < t + a (core)  
F r o m  Equa t ion  7 it  is found that :  

f -a  {Es[3' + (z + u/2)/R]/(1 - -  v) 
- t  

+ %(1 - -  3z2/t2)}dz 

+ %(1 - - 3 z Z / t a ) } d z  = 0 (21) 

Again using u/t = ~ and a/t = 18 this reduces to 

7 [ ( E e - -  Es)/3 + E s +  E~(1 - - a ) ]  

+ t [-- Es(1 --a)/2 + Es(182 --a18)/2 + Ec(1 - -  a)/2 

+ Ee(al3 -- t82)/2]/R + oecr - -  ~ )  (1 - -  a )  

x ( l - - u )  = 0 (22) 

F r o m  Equa t ion  8 is obta ined for the same interval  

( t - - a K u K t + a ) :  

f-_; {Es[YZ + (z 2 + uz/2) /R]/ (1--v)  

+ Oe(Z--3z3/t2)}dz 

ft 
- U  

+ { G  [3"z + (z 2 + uz/2)/R]/(1 - v )  
- { /  

+ Oe(Z -- 3z3/t2)}dz = 0 (23) 

This reduces to 

3' {Es(182 - -  1)/2 + E e [(1 - -  a) 2 --  181 ] /2}  

+ t{E ,  ( - -  4183 + 3oq82 - - 3 ( ~ +  4) + Er  _ ~ ) 3  

+ 4183 + 3c~(1 _ ~ ) 2  _ 3c~182 ] } /12R + oeo<(2 --ce) 

x (1 - -  3 a / 2  + 3a2 /4) (1  - -  v) = 0 (24) 

Equa t ions  22 and 24 can be used to el iminate 3', 

leaving an expression for R ,  and hence p ( =  1/R) 
ident ical  in form to that  given in Equa t ion  20, 

where the parameters] ,  k, l, ] ' ,  k ' ,  f take dif ferent  

values f rom those required in u < t - - a .  These 

parameters  are also given in Table I and have been 

used to obta in  the curvature  plots shown in Fig. 6. 
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Figure 6 Curvature plots for Case II using 
(a) E s = 2.5 GN m -s , E e = 1.25 GN m -2 
and (b) Es=0.8333GNm -2, Ee= 
1.6667 GN m -2 . In both cases the broken 
line depicts results fo~ a non-uniform 
modulus, and the solid line shows the 
curvature which would be obtained for a 
plate with the same stress distribution if 
it possessed a uniform Young's modulus 
E =  1.5GNm -2. 
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3 . 6 .  A p p a r e n t  s t r ess  d i s t r i b u t i o n  ( C a s e  I I) 

The same procedure as that above for C a s e [  

(Section 3.3) has been used to obtain the apparent 
stress distribution which would be derived by stan- 
dard application of  the Treuting and Read pro- 
cedure to a bar containing a parabolic stress dis- 
t r ibution and a step change in modulus at the s k i n -  
core boundary.  Once again examples have been 
examined in which (i) the skin is stiffer than the 
core and (ii) the core is stiffer than the skin. In both 
cases the sk in -core  boundary is taken to be 0.3 mm 
from the surface so that a = 1.2 mm and, with 
t = 1.5 mm again, 13 = 0.8. Once again the skin and 
core moduli  were taken to differ by a factor of  
two and the values chosen were (i) Es = 2.5 GN m -2 , 
Ee = 1.25 G N m  -2 , and (ii) Es = 0.8333 G N m  -2 , 
E e = 1.6667 GN m -2. As before the average Young's 
modulus for the whole bar is E = 1.5 GN m -2 in 
both cases, and these values for Es and E e were 
chosen for this reason, because this permits con- 
venient comparison with the results evaluated for 
Case I. Poisson's ratio was given the value u = 0.4. 

The oi distributions for both  Case II examples 

2 3 8 4  

are shown in Fig. 7. Departure from the parabolic 
shape is much more striking, especially near to the 
surface of  the bar. Both examples show a subsidiary 
maximum and minimum in the skin. 

3 . 7 .  C o m p a r i s o n  o f  t e n s i l e  a n d  c o m p r e s s i v e  

stresses (Case II) 
The areas shown in Fig. 7 have been compared in 
the same way as those for Case I (see Section 3.4). 
Once again the ratio of  tensile area to compressive 
area differed significantly from unity.  The values 
measured were 1.09 for the example in which the 
skin is stiffer than the core (Es = 2 . 5 G N m  -2, 
Ee = 1 .25GNm -2) and 0.88 for the example in 
which the core is stiffer ( E s =  0 . 8 3 3 3 G N m  -2, 
Ec = 1.6667 GN m -2). 

4. Comparison with experimental results 
Examples of  plots of curvature against depth of  
material removed obtained for injection mouldings 
made from different types of  material are shown 
schematically in Fig. 8. The corresponding stress 
distributions obtained from these plots using the 
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Figure 7 Stress distributions computed 
from the curvature plots shown in Fig. 6, 
using (a) E s = 2.5 GN m 2, Ee = 
1 . 2 5 G N m  -2 ( - - - - - - )  and (b) E s =  
0 . 8 3 3 3 G N m  -2, E e =  1 . 6 6 6 7 G N m  -2 
( . . . . . .  - ) .  

Treuting and Read formula are also shown in 
Fig. 8. Reference should be made to original 
sources to see to what extent these examples are 
representative and the degree to which variations 
can be promoted by changing the moulding con- 
ditions or post-moulding treatment [7 -11 ,  28, 42, 
53, 54]. 

It is notable that residual stress distributions 
derived by the Treuting and Read procedure for 
injection-moulded glassy polymers show departures 
from a parabolic shape reminiscent of  that shown 
for Case I when the skin is stiffer than the core 
(E s >  Ee). The profile obtained for Case II when 
the skin is stiffer than the core shows features simi- 
lar to those obtained in practice with short glass 
fibre-filled polypropylene. In the latter case 

~ J  

/ / ~  I~ 

F ~ 

I s O~  

L /F U 

(a) (b) 

measurements of  modulus on mouldings taken 
from the same batch were made by Thomas and 
co-workers [55]. Using an ultrasonic technique 
they showed that the material near to the surface 
was considerably stiffer than that in the interior. 
The actual values of  Es and Ec used in the compu- 
tations do not relate to any specific material, but 
were chosen to illustrate the kind of magnitude of 
effect that can be expected for realistic modulus 
variations. 

5. Conclusions 
The results of  the analysis described here indicate 
that the residual stress distribution obtained by 
the Treuting and Read technique may depart quite 
significantly from the true stress profile if the 

/ 

i / 3", /m 

(c) 

Figure 8 Schematics of curvature 
(p) and corresponding residual 
stress distributions (ai) com- 
puted assuming uniform Young's 
modulus. (a) A glassy polymer 
(polystyrene); (b) a semi- 
crystalline polymer (polypropyl- 
ene); and (c) a glass-filled poly- 
propylene.  These results follow 
work by Thompson and White 
[54] and are typical examples 
of results obtained on injection 
mouldings, but should not be 
taken to be representative of all 
possible materials and moulding 
(and post-moulding) conditions. 
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mouldings contain depth variation in modulus. 
The computed residual stress profiles show striking 
similarities with certain experimental profiles. It 
should be recalled that these computed profiles 
were generated using the initial assumption that 
the true stress distribution was parabolic, but on 
the evidence obtained so far it is impossible to infer 
that the true profiles for bars which have been 
examined using the Treuting and Read procedure 
are more nearly parabolic than those derived by 
the conventional application of the technique. 
There are too many factors involved to permit such 
a judgement, but the results presented here show 
quite clearly the need to measure the depth 
variation in modulus in order to refine the 
Treuting and Read analysis. A more positive state- 
ment on the reliability of  the technique will not be 
possible until such modulus data are available. 
The influence of a variation in modulus on the 
balance between the tensile and compressive 
regions of  the analysed stress distribution may 
explain why the two are often unequal in experi- 
mentally derived profiles. 

The above discussion should not be taken as an 
invalidation of the Treuting and Read procedure 
for the effect of  a modulus variation is generally 
smaller than the effects which have been found to 
occur as a consequence of altering the moulding 
conditions or the post-moulding conditioning 
except, perhaps, very close to the surface. This 
region is of  great practical importance because of  
the vulnerability of all articles to failure from a sur- 
face flaw, however, and we are currently attempting 
to devise methods to provide the necessary modu- 
lus data. 

Finally, attention has been concentrated on the 
effect of  depth variation in modulus in an attempt 
to isolate this effect and to simplify the analysis. 
The modulus has been taken to be uniform in 
planes oriented with the normal to the plane paral- 
lel to the short dimension of the bar (the z-axis). 
The effect of  anisotropy within such planes will be 
examined in a later paper. 
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